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Abstract 

We examine the effects of four types of errors in the AGS Booster 
dipoles and quadrupoles on the on-momentum closed orbit in this machine. 
We use PATRIS both to handle‘statistically the effects of kick-modeled 
errors and to check the performance of the Fermilab correcting scheme 
in a framework of a more realistic modeling. For the latter to be 
effective, we find that the r.m..s. values of the errors should not 
go much beyond 3 x lo4 in the appropriate units. 
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Introduction 

An accelerator lattice cannot be expected to be perfect, just as 
anything else made by man. Fortunately, there are theorems which guarantee 
the existence of a closed orbit even in an imperfect lattice, provided the 
deviations from the ideal lattice are not too big. However, large ranges 
of existing closed orbits will actually be of no value, because such closed 
orbits might violate aperture and other limitations and therefore be 
unacceptable. Hence, from the practical point of view, it is of utmost 
importance to determine both1 qualitative and quantitative links between 
the lattice imperfections and the resulting closed orbits . In this note 
we have addressed this important issue and have estimated the limitations 
on some of the lattice imperfections for the closed orbit to be correctab 
The types of imperfections that we have handled are the d ipole integrated 
field strength error h(~i)/Bl, the dipole axial rotation A9 , and the 
quadrupole lateral displacements in both planes. In this procedure it is 

le. 

very important that the same error is assigned to one physical magnet even 
if the magnet is divided in two or more parts. PATRIS now does this 
error assigning in the correct m'anner. 

Statistical Treatment of Closed Orbit Errors in the Kick Approximation 

For the purpose of quick statistical treatment of the effects of 
magnet imperfections on the (closed orbit, PATRIS employs an algorithm 
whose basic ingredients are given in the Courant-Snyder paper1 . The 
starting point is the equation of motion for the transverse degrees of 
freedom 

J 

where 2 is the transversal displacement, horizontal or vertical, from 
the equilibrium orbit and where F(s), a quantity which describes the 
field errors, is given by 

F(s) = ne, /0f (2) 

Here AB is a deviation from the ideal magnetic field, whereas Be is the 
magnetic rigidity. It is important to keep in mind that (1) does not include 
the effects of nonlinearities, including those coming from the sextupoles. 

PATRIS simulates the effects of imperfections by kicks, i.e. it 
evaluates the r.m.s. values of closed orbit deviations at various points 
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of interest by assuming that the right hand side of (1) is a Dirac delta Fl 

function. As previously mentioned, there are four contributors to the 
distorted closed orbit at each point, which are considered by the code. 
They are: 

1. Cumulative effects of the errors in the dipole integrated 
strength over the lattice. 

2. Cumulative effects of the axial rotations of all the dipoles 
in the lattice. 

3. Cumulative effects of the horizontal lateral displacements 
of all the quadrupoles in the lattice. 

4. Cumulative effects of the vertical lateral displacements 
of all the quadrupoles in the lattice. 

At each point of interest the code computes the above four entities. 
Each is computed under the assumption that it is the only perturber of 
the closed orbit and that in average the resulting r.m.s. error in the 
bending angle, i.e. the imperfection's kick strength, is one milliradian 
per magnet. Therefore, they portray the isolated influence of specific 
kinds of imperfections in the whole lattice on the closed orbit at a 
specific point of interest. The r.m.s. values are taken over 21 different 
distributions of random errors. These contributions are given in the 
columns 3 through 6 of Table 1. The last two columns of Table 1 describe 
the r.m.s. values of horizontal and vertical displacement at the end of 
each lattice element. These values are obtained by an appropriate 
weighting and combining of the four entities, 1 through 4, with the 
actual r.m.s. values of these perturbers (as opposed to those that would 
yield r.m.s. value of the bending angle exactly one milliradian) taken 
into account, and a subsequent evaluation of the r.m.s. values of closed 
orbi't displacements over the same 21 distributions of random errors as 
before. Needless to say, the presence of errors breaks the periodicity 
of the machine, if any, and the code takes this into account by moving 
from one superperiod to another :in such a manner that different sets of 
random numbers are being used in different superperiods. 

As previously mentioned, Eq.(l) does not include the effects of 
nonlinearities in determining the closed orbit. However, one consequence 
of the presence of sextupoles is nevertheless handled. Namely, the 
distorted closed orbit does not pass through the centers of the sextupoles 
and, as a result, there is a feed-down effect equivalent to quadrupole 
gradient errors, with the subsequent tune shifts and beta variations. 
These are evaluated by PATRIS for each of those 21 distributions of random 
errors and then printed. 

Fl: See Appendix A for some details. 
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Realistic Closed Orbit Calculation and Correction 

In addition to the previously described quick statistic treatment of 
closed orbit distortions, based on the simulation of imperfections by kicks, 
PATRIS is also able to handle the problem in a more realistic manner. 
Precise effects of the previously discussed four sources of errors are 
evaluated and incorporated into the 7 x 7 transfer matrix employed by PATRIS. 
Furthermore, nonlinearities are taken into account and simulated by kicks. 
The code employes one sequenceof random errors per run, using different 
random numbers in different superperiods. This means that at the present 
time one has to make several runs, if a statistical treatment of the realistic 
closed orbit is sought. After computing the distorted closed orbit, PATRIS 
corrects it by using the Fermilab monitoring/correcting scheme213j! 

The scheme uses a selected number of monitors and correctors which are 
in reality placed beside each other and which are identified with each other 
in the code. The beam position monitors and the sextupoles are assumed to be 
perfectly alligned with the reference orbit going through the quadrupole 
without a displacement. In addition, the beam position monitors are supposed 
to have ideal sensitivity. The best location for such a monitor/corrector 
element is the place where the relevant beta function is large. Therefore, 
we place all the horizontal elements beside the horizontally focusing 
quadrupoles, and we do the equivalent thing with the vertical monitors/ 
correctors, i.e. we place them beside each horizontally defocusing quad. 
At these locations the distorted closed orbit is monitored and the corrective 
kicks are being delivered there, by the dipole correctors. To evaluate the 
strengths of the corrective kicks,, the code takes the values of closed orbit 
displacements at three successive monitors and imposes the conditions 
necessary to make these displacements vanish in the absence of nonlinearities. 
Then the code moves one monitor forward and repeats this procedure, thereby 
obtaining another set of conditions. Going in this manner around the whole 
lattice, the code sets up a set of N equations with N unknowns, N being the 
number of monitor/corrector elements in the lattice. Fortunately, they can 
be solved by a simple successive elimination of the unknowns (see Appendix B 
for more details), without having to invert (an N x N matrix which might be a 
prohibitively large task for a big lattice. In doing so, the code evaluates 
all the kick strengths and then reevaluates ,the distorted closed orbit in the 
presence of these corrective kicks. In the absence of nonlinearities, i.e. 
with the chromaticity sextupoles turned off .for instance, PATRIS delivers 
such kicks that the residual closed orbit is zero at all the monitors, 
regardless of the r.m.s. values of the errors (except, of course, for grossly 
exaggerated values which would make the whole problem unstable). In the 
presence of sextupoles, however, the residual closed orbit cannot be forced 
to vanish exactly by this linear correcting scheme. Moreover, the presence 
of sextupoles aggravates the problem and the displacements of the uncorrected 
closed orbit get noticeably bigger with sextupoles (or other sources of 
nonlinearities) turned on 

This scheme, as its name indicates, has been successfully used at 
Fermilab and, in addition to being used in PATRIS, its versions have been 
incorporated also in some other tracking/analytic codes which handle the 
origins of closed orbit d i stortions in different ways. 



-4- 

Results of Statistic Approach to Closed Orbit Distortions in the Kick Approximation 

We have made two runs over the same 211 distributions of random errors, 
with the cut at 2.5a . First, we selected all four types of errors to 
have the same r.m.s. value 1O-3 , in the appropriate units. However, from 
the subsequent realistic closed orbit analysis, it became clear that the 
corrected closed orbit would be prohibitively large, at this r.m.s. value 
of errors. Therefore, we opted for the more stringent 3 x 10mr r.m.s. 
values of errors and repeated the run, keeping everything else unchanged. 
The results are displayed in Tables 1 and 2 and in Figures 1 through 4. 

Table 1 represents the r.m.s. values of the closed orbit horizontal 
and vertical displacement in millimeters (the last two columns), as well as 
the relative importance of the four types 0.f errors taken individually. Only 
one superperiod is printed, even though the code runs over all the super- 
periods, with the periodicity broken by random errors, in order to evaluate 
what is being printed for one superperiod. Two thingsare apparent. The 
r.m.s. value of closed orbit displacement follows the local size of the 
beta function, as one moves along the lattice. For the horizontal plane, 
the r.m.s. of displacement is maximum inside the horizontally focusing quad, 
where 1~ attains its maximum, and it is iminimum at the defocusing quad 
due to the minimum of PH . This is even more transparent from Figures 1 
and 2, where the r.m.s. values for x and y are plotted versus the magnet 
number in the superperiod (roughly versus the distance as one moves along 
the ring). We notice that the vertical plane displays a picture very similar 
to that of the horizontal plane except for the fact that it has been shifted 
by the distance between a QF and the first QD that follows. As far as the 
ranges are concerned, the r.m.s,, value of the displacement varies between 
about 1.6 and 6 millimeters. Therefore, we expect that few distributions 
of random errors will cause the closed orbit displacements to significantly 
exceed 6 millimeters, even though we have been able to find two of them 
(out of the total of eleven that we have examined) where at one or two 
monitors the displacement more than doubled this value (13.5 and 13.7mm 
have been found). The second conclusion that can be inferred from Table 1 
is that the quadrupoles have the tendency to create both the peak and average 
contributions bigger than thoseIf the dipoles. 

1 
When one combines this with 

the fact that weighting factors (in the procedure of combining the columns 
3 through 6 in order to get 7 and 8) are bigger for the quadrupoles than 
fo,r the dipoles, the immediate conclusion is that the quadrupole lateral 
displacement errors will be more important in the Booster than the errors 
in,troduced by the dipo1es.A similar conclus,ion applies also to some other 
machines, the RHIC in particular. 

Table 2 displays the tune shifts and the beta variations due to the 
effective quadrupole gradient errors, as a result of the crossing of the 
sextupoles by the distorted closed orbit. The beta variations are taken 
at the beginning of the lattice input, i.e,. in the middle of a superperiod. 
These results are also plotted and represented in Figures 3 and 4. 
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Results of the Realistic Closed Orbit Calculations 

As described in the Introduction, PATRIS can handle the problem of 
closed orbit in a more realistic and predictive manner than just simulating 
the lattice imperfections by kicks. However, the code in its present 
version performs the so-called realistic closed orbit calculations on 
one string of random numbers. Thus the user has the option to rely on the 
statistics of the kick-simulated closed orbit distortions, supplemented 
by a realistic closed orbit calculation for the purpose of finding the 
kick strengths and the residual corrected c'losed orbit, or, as an alternative, 
to run several cases of realistic closed orbit calculations for different 
random errors and to do statistics "by hand," 

We decided to perform some statistics after getting a seemingly 
peculiar result, from a single realistic closed orbit run, which indicated 
that the vertical closed orbit displacements tend to be much bigger than 
the horizontal ones. The kick-simulated run over 21 distributions of random 
err13rs did not indicate such a disparity between the two planes. Nor did 
a realistic closed orbit calculation on the RHIC lattice indicate anything 
similar. 

We performed calculations with 11 different sequences of random 
errors. Initially, we set the r.m.s. 
to be 1O-3 , 

values of the four types of errors 
but this proved to be toojgenerous. The residual corrected 

closed orbit, with the chromaticity sextupoles on, was in most cases still 
several millimeters in transverse size. Furthermore, we picked up a "bad" 
distribution of random errors (with the cut at 2.5Cr , as mentioned) that _- 
made the maximum displacement of the corrected closed orbit to be about 13 
millimeters. With sextupoles of.f, however, the correctors made the closed 
orbit exactly zero at the monitors, as expected. 

Therefore, we repeated the same 11 runs, but this time with the r.m.s. 
values of the four types of errors reduced to 3 x lo-' , in the appropriate 
units. In all of these 11 cases, the corrected closed orbit this time fell 
within one millimeter. We have also tested how the corrected closed orbit 
gets worse with an increase of the r.m.s. values of the four kinds of 
errors, on the worst distribution of random errors that we had encountered. 
While even this comparatively ralrher bad distribution yielded a corrected 
closed orbit that fell within one millimeter for the 3 x lOmy errors, it 
reached 1.36 mm at one location for the 4 x 10-yerrors and it barely passed 
2 millimeters at four (out of 4811 monitors for the 5 x 10” errors. 

These facts have given us the necessary confidence to claim that if 
a 3 x lOmy level of r.m.s. values is attained in the real machine, the 
Fermilab correcting scheme alone will be able to successfully handle the 
closed orbit distortions/arising from the four types of errors we have discussed. 
The results of the run over the worst distribution of random errors are 
shown in Table 3. They deviate quite appreciably from the r.m.s. values 
of displacements at the same monitors given in Table 1. However, we emphasize 
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that this is a bad case and that most other cases display displacements 
whose sizes are much closer to the averaged predictions over 21 cases. 
The results from Table 3 are also plotted in Figures 5 and 6. These 
figures represent the uncorrected and corrected closed orbit for the 
two planes. The reader will undoubtedly notice that the uncorrected 
closed orbit behaves in the horizontal plane much worse than in the vertical 
one. This is obviously a consequence of the particular set of random 
errors. We have inspected the results of all of the eleven runs and have 
found the closed orbit distortions bigger in the horizontal plane in four 
cases. It was just the opposite in another group of four cases, whereas 
in the remaining three runs the distortions 'were about equal in the 
two planes. 

Conclusion 

In this note, we have handled four major sources of closed orbit 
distortions: errors in the dipole integrated field strength h(~l)/Bl, 
axial rotation of the dipole, and the two possible lateral displacements 
of the quadrupole. This list is by no means exhaustive. Some other major 
errors that we have not addressed so far are errors due to the axial 
rotation of the quadrupole, errors in the field gradient strength AK/K 
for the quadrupole, and various higher order multipoles present both in 
the dipole and in the quadrupole. We are currently working on some of 
these issues and we also plan to address some others in the future. 

As far as the four types of errors that we have discussed are concerned, 
our conclusion is clear: one should strive lto achieve the 3 x lo-+ 
level of r.m.s. values and this is very likely sufficient for the 
Fermilab correcting scheme to work well. We definitely support the 
implementation of this scheme on the Booster. Its implementation will 
require installing a beam position monitor, followed by a dipole corrector, 
beside each quadrupole. The maximum integrated field strength for such 
a bump corrector, to be able to correct the orbit at the top magnetic 
rigidity of 18 Tm, is predicted to be about 55 Gauss*meters. This 
estimation may have to be somewhat changed in the future, once other 
sources of errors are brought in for an analysis. But the essentials of 
the correcting scheme should remain unchanged. 

However, there is an unpleasant scenario that cannot be completely 
ruled out. If, by some unfortunate circumstances, on Day 1 we find a 
very bad orbit, we will have to rely on other means, like physically 
moving quads and Fourier harmonic compensation, to bring first the errors 
down to the levels at which the proposed local correction scheme will work. 
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Appendix A 

Here we give the reader a basic idea on how PATRIS handles closed 
orbit errors in the kick approximations. The closed orbit deviation 2; 
at the i-th location, where j =/?; and the phase advance is 0: , is given 
by 

where the summation is over all the errors of strength @da (in equivalent 
kick-angle) at the location with 1 =fj and phase advance #;7@; . This 
formula for gl is used by PATRIS, which also takes care of the proper 
ordering of the phase advances (i.e. 4;7+;). The expression (A.l) can 
easily be derived by starting from the periodic solution to the 
equation of motion (Eq. 1 in the main body of this note) rewritten in 
Floquet coordinates (Eq. (4.6) of Ref. 1) and inserting the appropriate 
sum of Dirac delta functions as the perturber %(q) in Eq. (4.7) of Ref. 

Summation in (A.l) is linear and the two degrees of freedom are 
decoupled 

ividual' ly, assuming The code first computes each of the above four sums ind 
that at each maqnet 

(Rj3) 

1. 

n,Q Once the four quantities 2':" , '8~ 
y ,, D VI4 

, 2; , 3; are found for each of 21 
distributions of random numbers, the r.m.s. values of these four quantities 
are evaluated. They describe partial contributions to the total closed 
orbit distortion, where "partial contribution" means that it is evaluated 
under the assumption that it is the only present perturber. Since these 
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quantities are evaluated under thle assumption that (A.4) is true at each 
magnet, they describe the relative importances of various sources of errors. 

In order to find the r.m.s. values of the distorted closed orbit 
displacements, under the r.m.s. error values specified on the input by the 
user, PATRIS first abandons (A.4) and replaces (@i)~,~.s.by the actual r.m.s. 
values it computes on the basis of the input given r.m.s. values for the 
errors. Then it evaluates the four sums on the basis of these actual r.m.s. 
values for 8j , adds them up to get (A.2) and (A.3) and then takes the 
r.m.s. values for 2: and ~61 , over the 21 distributions of random numbers. 
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Appendix B 

In this appendix we sketch the basic Iprinciples of the so-called 
three bump method used in the Fermilab monitoring/correcting scheme. As 
described in the main text of this note, a certain number of monitors and 
correctors are placed at preferred locations, i.e. beside the quadrupoles 
where the relevant beta function is large. It is assumed that the 
monitors have ideal sensitivity and that they are perfectly alligned 
with the reference orbit going through the quadrupole without a displacement. 

The above drawing displays the particle trajectory through the 
three points of interest. Consider what is happening at the n-th beam 
position monitor and its two immediate neighbors. We label the monitor/ 
corrector block by P% and the phase space point at P,, by X, , i.e. X, 
will be the following column vector 

We also know the transfer matrix in the absence of errors between any pair 
of monitors (it is part of the full 7 x 7 transfer matrix between the two 
monitors in PATRIS). Let M'"'label the transfer matrix between the 
monitors P, and Pn+, . For one transverse degree of freedom its form is 

I 
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with the symplectic condition det M"' = 1 Ibeing fulfilled 

Suppose that the correctors deliver kicks with the kick angle 6~ at 
the n-th monitor/corrector Pw . The effect of such a kick is described 
by the following matrix 

Let these kicks be such that they steer thle on-momentum particle trajectory 
precisely through the positions Xy (in the ,absence of errors). Then the 
condition 

x n+\ = M ‘*’ 0, Xw (P. .q 

must be fulfilled. Written out in components (8.5) is just 

We solve (B.6a) for 2: 

and increment the label by I to obtain 

(B. 6cl) 

. 

03.7) 

Now insert71 from (B.7) into (B.6b) and equate the resulting jL+, with (B.8) 
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where (B.3) has been used to simplify the expression on the right hand side 
of ,the above equation. This.equation can now be solved for @,,,+, , i.e. 

(B.10) 

By decrementing the index n by one unit we get 

Therefore, the kick angle e,at the n-th bump corrector is completely 
determined by the displacements at the n-th monitor and at its two 
immediate neighbors, i.e. at the (n-l)-th and (n+l)th locations. 

In the absence of corrective kicks, the n-th beam position monitor Py 
will read the closed orbit displacement rq at the n-th location, the 
displacement being nonzero due to the presence of errors. To compensate 
for the effects of errors, one simply sets ye,, = - rw and evaluates the 
necessary kick angle 8,to create a reverse displacement in the absence 
of errors. In the presence of errors and with sextupoles off, these kicks 
will: precisely cancel the actual displacement at the beam position monitors. 
With sextupoles on, however, a precise cancelation does not occur, but the 
residual displacements are to a si gni fi cant degree reduced. 
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Tables 

1. This table represents the output from PATRIS for the kick-modeled 
statistical handling of closed orbit distortions. The statistics is 
taken over 21 distributions Iof random errors, with the r.m.s. values 
of all errors 3 x 10m4, in the appropriate units. The random 
number sequences were cut at 2.5P'. 

2. This table represents the tulne shifts and beta variations due to 
the crossing of the sextupoles by the distorted closed orbit, for 
the same run as the run presented in Table 1. The 21 rows in the 
table correspond to the 21 distributions of random errors. 

3. This table represents the output from PATRIS for the realistic closed 
orbit calculation over the wf3rst distribution of random errors. Note 
that the corrected closed orbit falls within one millimeter. Also 
note that the code supplies the correctors' kick strengths. 
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Tab'le 2 

CLUSED BRBIT ANALYSIS WITH SEiXTUPBLES 

TUNE SHIFTS AND BETA VARIATI0NS 

HURIZONTAL VERTICAL 

DBETA/BETA D-TUNE DBETA/BETA 

0.35986e-02 0.67646e-04 
0.87661e-02 0.28109e-02 

-0.34446e-02 O.l3982e-02 
-0.51444e-02 -0.30722e-02 
0.34473e-02 0.23414e-03 
0.83141e-02 O.l5707e-02 

-0.54302e-02 0.28144e-04 
O.l7500e-01 0.69144e-02 

-O.Z0588e-02 0.56023e-03 
-0.56593e-02 -0.33207e-02 
-0.25092e-02 -O.l2864e-02 
0.96144e-02 O.l3351e-02 
O.l1041e-01 0.52351e-02 

-O.l6015e-03 -O.l7859e-02 
-0.57906e-02 -0.40243e-04 
-0.42458e-03 -O.l8543e-03 
-0.87577e-02 -0.47354e-02 
O.l4788e-02 -O.l5164e-02 
O.l7838e-01 0.78069e-02 

-O.l9558e-02 -0.40741e-03 
0.60399e-02 0.25056e-02 

r.m.s. 
values: 0.79777e-02 

END OF THE RUN 

0.20248e-02 
-.b;36719e-02 
O.l2921e-01 
O.l0382e-01 

-O.l0523e-01 
-O.B4879e-02 
0.63170e-02 

-0.68454e-02 
0.70723e-02 

-0.76399e-02 
-0.46559e-02 
-0.28951e-02 
-0.24901e-02 
-0.65663e-02 
0.59524e-02 
0.42070e-02 

-0.84466e-0'2 
-b.f1469e-03 
-O.l2690e-01 
-O.l0504e-03 
-0.31512e-02 

0.32183e-02 0.72304e-02 

PATRIS VRSN 302 

D-TUNE 

0.55865e-04 
0.31661e-03 

-O.l2674e-02 
0.32857e-02 
0.82913e-03 
0.79469e-03 
O.l9825e-02 

-O.l5292e-02 
-O.l4308e-02 
0.34624e-02 
0.58659e-03 
O.l7469e-02 

-0.23369e-02 
0.36037e-02 

-0.57185e-03 
O.l650le-02 
O.l5660e-02 
0.29325e-02 

-0.30189e-02 
-O.l0229e-03 
-O.l8314e-02 

0.20317e-02 
CPU-TIi 
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Figure Capt ions 

1. This figure represents the r .m.s. values of the closed orbit 
horizontal displacement at the end of each magnet, as given 
in Table 1. 

2. This figure represents the r.m.s. values of the closed orbit 
vertical displacement at the end of each magnet, as given 
in Table 1. 

3. This figure represents the p'lot of the tune shifts due to the 
crossing of the,sextupoles by the distorted closed orbit. The 
21 points in the diagram correspond to t:he 21 different random 
error distributions. 

4. This figure represents the p'lot of the beta variations due to 
the same reason as the tune :shifts represented in Figure 3. 

5. This figure represents the plot of the closed orbit horizontal 
displacement at each horizontal monitor/corrector element. The 
results are those obtained from the "worst" encountered random 
error distribution in the set of realist;ic closed orbit calculations. 
The term "worst" here means ,to describe the case of the biggest 
displacements in either of the two planes, seen in the group of 
11 runs. The plot also includes the corrected closed orbit. 

6. This figure represents the r'esults of the same run, with the 
same "worst" distribution of errors,as 7n Figure 5, but for 
the vertical plane. 
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